
International Journal o f  Theoretical Physics, Vol. 17, No. 9 (1978), pp. 725-743 

Time Without Clocks--An Attempt 

G. Karpman 

Universitd de Technologie de Compi~gne, rue Roger Couttolenc, 
B.P. 233, 60206 CompiOgne, France 

Received October 15, 1978 

We try to define time intervals separating two states of systems of ele- 
mentary particles and observers. The definition is founded on the notion 
of instant  state of the system and uses no information connected with the 
use of a clock. Applying then the definition to a classical clock and to a 
sample of unstable particles, we obtain results in agreement with experiment. 
However, if the system contains "few" elementary particles, the properties 
of the t ime interval present some different features. 

1. INTRODUCTION 

Discussions on the nature and on the properties of time are generally 
the doing of nonphysicists. The comparison of the importance of published 
work by physicists and nonphysicists in symposia or collective work is 
conclusive (see for example Frazer, 1966). 

Neither Newton, for whom "Absolute and mathematical time, of itself 
and from its own nature, flows equably without relation to anything external, 
and by another name is called duration," nor Einstein have discussed the 
nature of the time measured by an observer. Restricted relativity, which 
deals in particular with the relation between space and time intervals separat- 
ing events perceived by observers in uniform relative motion, does not 
study the meaning of physical time. The observers are supposed to be in 
possession of identical measuring rods and clocks upon which no questions 
are ever set. 

Some very important problems directly related to time have, however, 
been studied in physics. These problems arose from the work done at the 
end of the 19th century, when the connection between classical dynamics 
and thermodynamics was elucidated. An apparent contradiction originates 
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from the behavior of  dynamics on the one hand and thermodynamics on 
the other versus the change of  sign of  t: the equations of  dynamics are in- 
variant in form under the change of  sign + t /- t ,  this is not the case in 
thermodynamics, which, however, arises from the dynamics of many par- 
titles. This is the problem of  the "arrow of  time" as Eddington (1929) 
termed.it. Belonging to this category and source of a great number of  recent 
works is the question of  the nonreversibility in time of  the weak interactions. 
A general bibliography for these questions can be found in the book of  
Davies (1974). 

These works deal more with the properties of  fundamental laws of  
physics versus the change of  sign of  t than with the significance of  time. 
Completely different from these works are the articles of  Salecker and 
Wigner (1958) and Zimmerman (1962), who discussed some of  the difficulties 
that one encounters when applying "Newtonian time" at the microscopic 
level. Our work is more in the spirit of  these. 

The object of  our study is essentially constructive: we shall propose to 
define not time, but a time interval for an isolated system, avoiding, of  
course, the direct or indirect use of  a clock. 1 The fundamental difficulty 
which we will encounter is the following: We consider that time gets a mean- 
ing only in the presence of  an observer. However, the definition of  time 
interval that we are looking for must be insensitive to a change of  observer, 
that is to say we must find a definition that is dependent on the existence 
of  an observer but at the same time objective. 

We shall show that for macroscopic systems the time interval that we 
have defined has all the properties of  the "Newtonian" time interval, which 
will not be the case for microscopic systems. 

2. THE STATE OF A SYSTEM 

We must be very careful in the definition of  the state of a system. In 
particular, one must absolutely avoid the use of  a clock for states from 
which time intervals are constructed. I f  not, the time of the observer would 
be transported at the level of the microscopic state and the definition would 
become circular. 

The observer must thus use essentially experimental data obtained 
independently of  measurements using macroscopic clocks. The data should 
be restricted to those characteristics of  the interaction of elementary particles 
(or more generally of  the individual objects making up the system) between 
themselves and not of  the interaction of  these elements with the observer 

1 By "clock" we mean a device giving the chronological order of events with respect 
to the time experienced by the observer (which is a "Newtonian" time). 



Time Without Clocks 727 

since otherwise the definition would depend on some properties of the 
observing device. 

What can be defined of  a system under such conditions? If  we admit 
that the interactions of  the elementary particles are timeless, 2 one can show 
that the energy, direction, and modulus of the momentum of elementary 
particles can be defined without docks. But the direction of  propagation of 
a particle on its track depends on an observation using a macroscopic clock 
(the same applies to the sign of  helicity). What can be defined is thus E, + P. 
The analysis of the relationship between the determination of  the sign of  
P and the more or less hidden use of  macroscopic clock has been given 
already by the author (Karpman, 1977). 

Elementary quantum mechanics offers indications compatible with this 
idea: the maximum determination one can obtain form the instantaneous 
study of  a distribution in space at time to will give us quantities such as 

(a) p(x, to) = ~*(x, to)cp(x, to) 

(b) fi(x, to) = ~0*(x, to)F~o(x, to) + hc F~ are matrices, i = 0, 1, 2, 3 

(c) h,(x, to) = ~0*(x, to) a,cp(x, to) + hc l = 1, 2, 3 

From these quantities one has to reconstruct ~ x ,  to) and by Fourier transform 
obtain r 

Suppose we have done so, and obtained r  = f ( P )  which gives for 
the density of  momentum: f * (P) f (P) .  One can then observe that (a), (b), (c) 
being real quantities, it is not possible to decide whether we have been 
working with ~0(x) or ~0*(x). Now if we have worked with ~0*(x), we have 
obtained, not r  but ~b(-P) since if 

one has 

f g~*(x)e -'Px dax = ~(P) 

f If ]* [~o*(x)]*e -'P" dSx = ~*(x)e 'ex dax = ~b*(-P) 

Thus one does not know, using restrictively instantaneous measurements 
in space (not using time derivatives which imply the use of macroscopic 
docks), if the distribution of  m o m e n t a f * ( P ) f ( P )  refers to __ P. 

It is the argument of  internal logical consistency that forces us to 
discard the use of information that contains even in a hidden way the notion 
of  time. As to the possibility of  establishing special relativity without using 
the concept of time, this is readily done without any difficulty. 

2 The interactions are timeless in our language. In a classical language one could say 
"instantaneous." 
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Let us sum up our hypotheses: The interactions of  elementary particles 
between themselves are timeless. The observers will use information obtained 
without clocks. 

These hypotheses lead us to the conclusion that the maximum of  
information available for an observer consists in the energy and the momenta 
of elementary particles including an indetermination of sign: 17,/+ P. (We 
leave apart helicity and other quantum numbers which do not play any 
particular role in the development of  our argument.) 

3. OBSERVER AND SYSTEM 

Let now 0 be an observer and S a system. We are interested essentially 
in systems and observers that have kept the property of remaining well 
defined even when they are coupled together by an observation of 0 upon S. 

One essential property of  an observer is that he enjoys the faculty of  
being conscious of  his state. 

Let a, b, c . . . .  be the different states of  S (in the sense defined above). 
Clearly the determination by 0 of  the state of  the system S can only happen 
through an interaction of  both. In fact it is because 0 will find himself in 
a certain state O~ that he will assign to S the property of  being in the state 
a. In general for every state a of the system S there exists a group of  states 
0~, 0~, Of . . . .  of  the observer. 

We introduce now the probabilities P(Oa) that the observer set in 
interaction with the system lies in state 0~. 

4. DEFINITION OF A TIME INTERVAL FOR A 
CLOSED SYSTEM 

Suppose now that S is a system in weak coupling with an observer 
but otherwise isolated from the rest of  the world. We look for a function 
of  the states of S that possess the properties of  a time interval under macro- 
scopic conditions. Since we find no meaning in time if no observer is present, 
we must imply the observer in the definition. We do it in the following way: 
we introduce a binary nonsymmetrical relation between states O~ and Ob . . . .  
What is usually called the time interval between the states a and b will 
become here a time interval between the states Oa and Ob of the observer 
(though in the so-called physical case we shall be able to give definitions 
independent of  the nature of  the observer). 

4.1. General Conditions on t~b. We list now the four conditions that 
a time interval must satisfy: 
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(1) It must be a function of  the probabilities that can be constructed 
from the states a and b of  the system, such as: P(O=), P(O,ub-=), 
P ( O ~ _ ~ b )  . . . .  

(2) If  t~b is the time interval, one must have 

t~ = -- t~ (4.1) 

(3) The principle of  the double dock:  suppose O is coupled to S and 
to S ' ,  which is a duplicate of  S. I f  we suppose that S and S '  are not Coupled 
with each other and index the states of  the system made up of  O, S, and S'  
by O=~., one must have 

t~,,bb, = �89 + t~,v) (4.2) 

(two identical clocks give the same time interval as a single one). 
The first three conditions should always be valid, independently of the 

nature, size, and type of  coupling of O and S. 
(4) Suppose that we deal now with systems described by an infinite 

number of  states. In that case we demand that 

t~b + tbc = t~c (4.3) 

(Our current experience is that of such types of  systems and this is why 
this condition is necessary here. By contrast, we have very little experience 
of  other systems.) 

The time interval between a and b (more rigorously, between O~ and 
O0) will be defined as some real nonsymmetrical function of the states a 
and b satisfying the conditions (1)-(3) or (1)-(4) above depending on the 
situation. From condition (1), we see that 

t=~ = O F ( P ( O ~ ) ,  P ( O b ) ,  P(O=vb-~) . . . .  ) (4.4) 

where 0 is a constant depending on the system and on the observer. 

4.2. Study of O F ( P ( O a ) , P ( O b ) . . . ) .  Let us discuss now condition (3). 
It is a generalization of the idea that two identical clocks giving the same 
time interval are equivalent to a single one. 

The immediate consequences of relation (2) are easily demonstrated by 
taking for a' and b' some special states: 

(1) a' = a, b'  = b leads to 

ta=,bb = �89 + t~b) = tab (4.5) 

(two identical docks giving the same indications are equivalent to one). 
(2) a'  = b'  = c gives us 

t~c.bc = �89 + tcc) = �89 

by condition (2). 
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(3) With a' = b, b' = a we obtain that 

tab,b~ = �89 + tb~) = 0 

by condition (2). 
This relation is compatible with t=, = 0, since here, the two systems 

being identical, there is no possibility for the observer to distinguish the 
states labeled ab and ba. [A further generalization could be, if  O observes 
two different systems S and Y,, which states are, respectively, labeled by 
a, b , . . .  and ~,/3 . . . . .  to set t~.ba = �89 + t~a).] 

Let us make use now of  the relation (4.5) to make more precise the 
form of  the function F(P(Oa)  . . . .  ). In terms of  F ( P ( O : )  . . . .  ), the relation 
(4.5) reads 

O(2)F(P(Oa) 2, P(Ob) = . . . .  ) = O(1)F(P(Oa), P ( O b ) , . . . )  (4.6) 

Let us study first the one-dimensional problem. We shall look for the function 
f ( x )  such that 

e(2)f(x 9') = O(1)f(x) (4.7) 

where 0 ~< x ~ 1. Two cases have to be distinguished: (a) x takes discrete 
(finite or not) values in [0, 1]; x = a~, i = 1, 2 . . . . .  (b) x can take any value 
in [0, 1]. 

In case (a) there is little to say. One cannot take the derivative with 
respect to x, and the iteration of  the physical model will lead to 

e(3) f (x  8) = e(1)f(x)  

Suppose now that f(a~) are arbitrarily given numbers. One can then take 
a complete arbitrary f ( a l  ~) which will define 

and then set 

0(2) = 0~'1~ f ( a , )  
- , - ,  f(at=) 

o(1)  ~ . .  
f(a~=) = 0 ~  Jtao,  i > 1 

One can proceed in this manner for all n, step by step. The only ditticulty 
that could arise is if one a~ ~ is equal to an aj. In that case, one should take 
into account that f(a~ k) = f(aj) .  

One can conclude that condition (3) for the discrete case does not in 
general lead to any particular property of f (x) ,  which can thus be considered 
as an arbitrary function. 



Time Without Clocks 731 

In case (b) one can determine the shape o f f ( x ) .  In (4.7), O(2)f(x 2) = 
O(1)f(x), one can always consider x to be equal to t 2, 0 ~< t ~ 1, for  which 
the function is defined. One has therefore 

O(2)f(t ' )  = O(1)f(t 2) = 8(1) 
8(1) 
~(2) f ( t )  

more  generally one obtains 

f ( t  '2") = a"f(t) ,  a = 8(1) 8(2) (4.8) 

A general solution o f  this equat ion is easy to obtain. Let  u(t) be a particular 
solution o f  (4.8). We set w(t) = u(t)v(t),  where w(t) is the general solution. 
One has therefore 

uf t ~2">)v( # 2")) = A"u( t )v( t ) 

or with (4.8) 

v(# 2"~) = v(t) (4.9) 

Lett ing now n -+ ov one sees that  

v(t) = lim v(t ~2"~) = v(O) = C (4.10) 
n . - ~  oo 

N o w  a particular solution of  (4.8) is obvious: 

u(t) = (log t) ~ (4.11) 

where 2 ~ = A. The general solution is therefore 

log [0(1)/0(2)] (4.12) 
f ( t )  = C(log t) ~, a = log 2 

The general problem refers, however, to 

F(P(Oa) ,  P(Ob) .  . .) 

where P ( O ~ ) . . .  can be considered to be independent  variables. Let  us 
discuss the problem of  two variables as an example. We make use first o f  
the second condit ion:  

tab = -- t~a 

which here leads to F(x,  y)  = - F ( y ,  x). We have thus 

F ( x  2, yZ) = AF(x, y)  (4.13) 
and 

F(x ,  y)  = - F ( y ,  x) (4.13') 
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To find a general solution, we use the same trick as in the one-dimensional 
case: Let u(x, y) be a particular solution of(4.13) taking (4.13') into account. 
Let w(x, y) be the general solution. We set w(x, y) = u(x, y)v(x, y) where 
v(x, y) is an unknown function. 

From w(x 2, y2) = ~w(x, y), we find v(x 2, y2) = v(x, y), and by iteration 
we obtain 

v(xC~"3, y,~",) = v(x, y) 

Taking the limit n --~ oo we obtain v(x, y) = C'. 
N o w ,  a particular solution of  (4.13) and (4.13') is 

f ( x ,  y) = C [(log x) ~ - (log y)~] 

which is therefore the general solution. In the general case, one obtains 

F(P(O~), P(Ob) . . . .  ) = C{[log P(Oa)] '~ - [log P(Ob)] ~'} 

+ C'{[log P(Oa~,~- ~)]" - [log P(Oaub- b)]')" �9 �9 

(4.14) 

our next task is the determination of  c~. 
We apply now the relation 

t~b + tb~ = t~ (4.3) 

This allows an important simplification: F ( P ( O a ) . . . )  reduces to 

F(P(O~) . . . .  ) = C{[logP(O~)] ~ -  [logP(Ob)] ~} (4.14') 

This is because there is no simple general relation between P(O~u~_~), 
P(Obuc-c), and P(O~uc-c), for example, while the relation (4.3) is auto- 
matically verified with (4.14). One can still simplify F(P(Oa), P(Ob)) in the 
nondiscrete case (x ~ [0, 1]). 

We take advantage of  the relation 

tao,b~ = �89 

This corresponds, in terms of  the function F ( ) ,  to 

O(2)CiF(P(O~)P(Oc), P(O~)P(Oc))] = �89 P(O~))] (4.15) 

or setting P(O~) = x, P(O~) = y, P(Oo) = z, we obtain 

O(2)C[(logxz) ~ - (logyz)"] = O(1)[(log x) ~ - ( logy) ~] (4.16) 

where we recall that 

log [0(2)/8(1)] (4.17) 
= log 2 
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Taking the derivative of both members of this equation versus z one sees 
that the left member can be made independent of  z if and only if a = 1. 
Besides, with this value of  a, the relation (4.16) is obvious. 

When a = 1, one has 
0(1) = 20(2) 

as a consequence of  relation (4.17). More generally, one will have 

nO(n) = 0(1) (4.18) 

In the case, x e [0, 1 ], one obtains finally the simple formula 

~', P ( G )  
ta.b = ~r iOgp--~b ) (4.19) 

where we have written r iM instead of 0(1)C. 
is a constant, and M the mass of  the system. This is a good way of 

taking into account the relation (4.18). 
This doses the discussion of  the case x e [0, 1]. 
In the discrete case, nothing general could be obtained. We shall (for 

practical reasons) take into account the antisymmetrization by writing (in 
analogy with the continuous case) 

~ ,  R(OalOb) tab ---- (5 lOg 

where R( [ ) is a function defined on states O~ and Oh. 
For  the general discussion to follow, we shall use the expression 

~- R(O.IO~) 
tab = ~ l o g  R(OblOo) 

keeping in mind that in the discrete case, R(O,,lOb) is any function on Oa 
and Ob while in the continuous ease, we will have 

R(Oal Oh) _ P ( 0 9  
R(OblOa) -- P(Ob) 

Besides, U is independent of  M in the continuous ease. 

4.3. Anteriority, Contemporaneity, Posteriority. Let us now use the 
sign of  tab to introduce a relation between the states of  a system. We shall 
say that a is anterior to b (or equivalently b is posterior to a) when tab > 0. 
When tab < 0, a will be posterior to b (and b anterior to a) in conformity 
with the relation tab = - - t b a .  

This relation is not an order relation between states in general as we 
can check on an example: Let us consider a system consisting of  a finite 
number of  states (as any actual clock having a dial)---three to simplify the 
description: al, a2, a3. 
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We suppose now 

R(Oo,[Oo, ) = 

R(Oo~IO,~) = R(O,,IOo,) = R(Oo, IO,1) = 

R(Oo, IOol) = R(O,,[Oo,) = R(Ool[Oo,) = ~, 

with/~ > y. One has then t,~a2 = ta2a, = tasal, with the consequence that 

al anterior to a2 

a2 anterior to aa 
and 

aa anterior to al 

This system works very much like an ordinary clock for which the hours 
(in natural order) are anterior one to the other, 12 being also anterior to 1. 
This case is, however, never considered because besides an ordinary clock 
we make use of  another one, which indexes half-days all the year round: 
we know that 12 is anterior to 1 because they do not belong to the same 
half-day. I f  we had no such information at our disposal (as in our example) 
we would obtain a "circular" anteriority relation. These remarks are valid 
in general; however, as we shall see in Section 5, transitivity occurs for a 
large class of  systems of  fundamental interest for physicists, namely, those 
for which the following relation holds: 

tab + tbc = tac 

Let us define now contemporaneity. Two states a and b will be con- 
temporaneous when ta~ is equal to zero. This relation is not transitive in 
the general case, but in the conditions of  Section 5, it becomes so and is 
then quite useful. 

I t  might be of  interest to comment upon this definition. We consider 
the example of  a particular system e which can be described by two states 
a and b such that:  

R(Oo[Oa) = ga R(O~[O~) = Rb 
R(OalOb) = R(O~lO~) = R 

Of course t~ = 0 and the states a and b are contemporaneous. A classical 
image of  ~ is that of  a pendulum that can only be observed in its extreme 
positions, cr is to be compared to a clock deprived of any dial or handle and 
which cannot tell time. 

One could object that it is always possible for the observer to count 
beats. This means that the observer should work as a dial and hands. In 
that ease Oa and Ob are not sufficient to describe the system "observer-o."  
One should introduce the states O~ ) and O(b q), where the indexes p and q 
give the numbers of  beats counted from a certain state of  O (p and q represent 
the memory of  the observer). 
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We are thus far from the conditions of  work of  the system a. (However, 
this problem of  the clock is discussed later in Section 5.1.) In some way, 
a is a system in which states are not rigidly bound causally: state a is as 
much the cause of  state b as b is the cause of a. Clearly, eontemporaneity 
is a different concept from the simultaneity of  two events as it is defined in 
restricted relativity. 

4.4. Relations with the Classical Notions of Past and Future of a State. 
It is important to examine what in our language corresponds to the notion 
of  past (or future) at time - 0 (or + 0) of  a state a. We consider that the 
only existing reality is the presence of  an observer. This has been explained 
clearly, recently, for instance by Prior (1972). Classically, the past of a 
state a, at time - 0 (0 > 0) is a state a ( -  0) of  the system such that, at time 
+ 0 "later," " the"  state a ( -  0) has become a (+  0). 

Here we have to discuss first states of  the observer. In this present theory, 
there is unfortunately no unique state Ob such that tab = - 0. What we have, 
for every given state a, is a sequence of  states b~ such that tabt = - 0. Any 
state b~ could be "the past of  a" at time - 0  and could not be excluded. 

What is reasonable to do, however, is to study the sequence R(OalOb,) 
and investigate if there is a sharp maximum, achieved for a state bo for 
instance. This state could be defined "the most probable past of  a at time 
- 0 . "  The state b0 has the property that both R(O,,lObo ) and R(ObolO,,) are 
maximal, and the definition is reasonable. One must stress that, clearly, 
there is no way for O to know if b0 is the past of  a. 

The sequence of  b states may be narrowed if, e.g., O uses information 
including a clock. A method for O would be to use a classical clock. In that 
case, in his present state O,, O would include in the description of  his state 
the record that at time - 0 the system was in a state/3 (since the clock gave 
this indication). O would have to reconstruct his 0 past, taking this informa- 
tion into account" O would look for the states b such that tab = - 0 knowing 
that the state a includes the record of  the clock showing time - 0  for a 
state/3. 

The use of  a second observer O' considering O and S as a system S'  
could also help to reduce the sequence b, but it will not single out " the" 
past of  a at time - 0, as one can conclude easily by discussing the problem 
on the same line as above. 

The question of  the future at time + 0 of a state a is discussed in the 
same way as above, introducing the sequence of state c, such that 

-~ , R(O~IOo,)  
log R(Oc,[O~) = 0 

and introducing the state Co which maximalized the sequence R(Oa[OcO. 
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In the general case discussed here (when there is no transitivity of  the 
relations "anterior to"  and "contemporaneous to") the most probable past 
and future have subtle properties. For  instance, if we consider the state d 
"past"  (at time - 0) of  the "future" (at time + 0) of  the state a, we shall 
obtain generally d ~ a. We shall see that these results become less unpleasant 
when we restrict the field of  this study (Section 6). 

Before leaving these general considerations we discuss another problem. 

4.5. "The Past Never Comes Back."  One admits generally that "There 
exists remnants of the past not of  the future"--as  a corollary, one "can change 
the future, not the past." Our position on this point is widely different from 
the one expressed by Reichenbach (1971) and nearer to that of  Augustine 
(400) and Prior (1972). For  us there exists nothing like remnants of  the past. 
There is a present, which we call also the real. From this present state, taken 
as a limit condition, an observer can try to reconstruct the 0 past states of  
a system for various 0. 

Given a state Or, of the observer (his present), he might look for the 
state p such that 

�9 R(OrlO,) 
~r log R(Oj, IOr''F) = 0 

where 0 is a negative time. Among the different solutions p, he can look 
as in Section 4.4 for an extremum and call it the past at time 0 of  our present 
state. 

One can thus modify the past: the present annihilation of  an historic 
document (and of its facsimile) will modify our reconstruction of  the past 
as did the discovery of  the 14C datation, for example. In the same way, 
we have the possibility of modifying the future, that is to say, by changing 
the present, we change the solutions F of  the equations 

~-. R(O,[O,) 
0 < o = ~ o g ~  

and therefore the state F* which maximalizes R(OT[ OF). 
Our position concerning past and future looks very symmetrical and 

one could inquire into the origin of  the feeling of  the difference that we 
all experience: the past seems rigidly fixed, unalterable, contrary to an 
undetermined and potentially changeable future. The reason for that is to 
be found in the fact that a past is a reconstruction of such a state that the 
probability of "return" becomes lower and lower as the past becomes more 
and more remote. One cannot experience the past (the 0 past max of  our 
present state). On the contrary, we can always (theoretically) compute the 
0 future max state bo of  the present state of  a system and compare it with the 
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really obtained state Co such that tbco = 0. If  for instance Co is equal to 
bo then one can say that the future estimated at state b has been reached. 

Generally speaking, one expects that bou will not be realized, but some 
bo. The difference between past and future has thus its origin in the difference 
in possibility of  the confrontation of  a predicted state with the realized one: 
this is possible for a 0 future state, practically impossible (for "large" 0) 
for a 0 past state. 

5. RELATIONS WITH "CLASSICAL NEWTONIAN"  TIME 

We shall now show that if  we apply our definition to a macroscopic 
object we find an agreement with newtonian time. To begin with, we study 
the case of  a classical dock,  to which we apply our definition and then 
check that both times can be put in linear correspondence. We shall try to 
give a general treatment of  the question. We consider a clock to be composed 
of three different parts: an energy source; a system P described by a finite 
number of  states, two at least, which we call a pendulum but is any vibrating 
device, a system D, which we call the dial but is any system containing a 
denumerable set of  states. We must explicate the relation between P and D, 
the energy source playing, here, a negligible role. 

To simplify the discussion suppose that P can be described by two states 
P1 and P2. D is described by the states dl, d2 . . . . .  D is in interaction with 
P on the one hand and with the observer on the other. 

A "classical" clock works in the following way: Every beat of  the 
pendulum entails a change of  state of  the dial: d~--> d~+~. The clock cannot 
go backwards, that is to say, a transition d~-+d~_~ is impossible, as it is 
impossible for the clock to jump too quickly forward: with one single 
beat of the pendulum, the dial cannot jump from state d~ to d~+l+K, K > 0. 
The clock is read in the following way: we say that the interval of time 
between states of the dial dj and d~ is ( j  - 1)0, where O is a characteristic 
time constant of  the clock. 

Let us now discuss these properties of a clock in our language (where 
probabilities play a fundamental role). We use the same notations but now 
we must introduce probabilities of  the type P(Oa)"  �9 �9 with states defined as 
in Section 2. A state of  the clock will be labeled ad~ with a = 1, 2 (to simplify 
the discussion) and i = 1, 2 , . . . ,  n. The states of  the observer will be labeled 
O~,. Let us make some observations on the relations between the states of 
the dock.  

First of all, the observation of different positions of the pendulum 
when the dial indicates the same state a~ does not allow us to measure time: 
it is not possible to order chronologically different states of  a pendulum if 
the dial lies in a fixed state. One must also notice that the clock has no 
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memory: the time interval between states ~,  fl~+ 1 and at+ ~,/3,+ k+ 1 are equal. 
Moreover, the transitions are independent of  ~. 

These general remarks made, we come to the mathematical expression 
of  t,b: Since equation (4.3) is obviously valid for the states of  a dock,  we 
shall use the relation 

�9 R(OolOb) 
t~b = 0 log 

in a special way to obtain the properties that we demand from the time 
interval. 

We make an important assumption. Namely, we set 

R(OalO ) = e(oo  ) 
P(Ob) (5.1) 

which is some kind of conditional probability [it becomes so if  P(Ox) = 
P(x)]. 

With this expression, we obtain the addifivity property for the time 
interval since 

O. R(Oo[O~ ) , P(O~) 
~og R(OblOa) = 0 ~ogp-F0-~ ) (5.2) 

However, there is an important difference: (5.2) is valid only when 
P(O,~b) ~ O. What we suppose now is precisely 

P(oo  ) = 0 (5.3) 

in the cases where the time interval does not exist. It is easy to list these cases. 
They correspond to the states a~ and/3~+, such that 

a # fl, n even 

a =/3, n odd (5.4) 

On the contrary, the time interval between a and b exists if  

a #/3,  n odd 

=/3, n even (5.5) 
In this last case, we set 

p(o , ,_x)  = Y > 1 (5.6) 

independently of  ~ and i, a #/3.  In this way we have taken into account 
the general conditions at the beginning of  this section. 

It is now obvious to check that in case (5.5), one has 

[ P(o.,..) e ( o . , . l ) ]  
t,,a,+. = 0 log [ p ~ )  P(Oa,+._,)"" ~ ] = 0 n log y 

which gives us the expected behavior. 
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6. THE OBJECTIVE CASE 

When results of  observation are practically independent of  the observer, 
the mathematical expression for tab should contain information restricted 
to the states a and b. We show in the next paragraphs that the simplest 
formula can lead to good results. We set tentatively 

, P(b)  
tab = _ ~ t t O g p ~  (6.1) 

where P(x )  is the probability of  state x. In this case one has 

tab = tac + tcb (6.2) 

I f  we come back to the problem of the future (at time + O) of  the past (at 
time - 0 )  of  a state a, what can happen is the following: Let b~ be the 0 
past of  a: 

tbta = + 0 

Let now (c~)j be the future states (at time + 0) of  the state b,, 

tb,c~,), = + 0 

In the general case, little can be said of  the (C~)j states: the condition (6.2) 
allows us to tell that 

ta(eOj = tab~ + tb#,)j = 0 

Thus, though (c,)j is generally different from a, these states are contempora- 
neous. 

Computations o f  P(x) .  We do not know how to compute P(x )  for 
a given system. What one could do phenomenologically is evaluate the 
natural frequency of  occurrence of such states as single particles of  a given 
type, vertices ("interacting states"), and groups of  particles, and from that 
obtain the probabilities of  different states. For  instance if  one is interested 
in the reaction 

rre-~/z + v 

(we use ++ since at the level of  states we cannot distinguish the reaction 
~r-+/z + v from t~ + v -+g) .  

One shall count at one instant, in a vast natural (nonprepared) system 
the numbers 

nl of*r particles 
nz of  interacting states (or vertices) rr+-+ t~ + v 
na of  interacting states (or vertices) t~ + v+-~/z + v with the condition 

(Pu + Pv) 2 = m2c4 

n4 of  couples of  free t* and v such that 

(e~ + PO 2 = m a c  4 
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From the frequencies one obtains the probabilities 

n, 
ny 

from which one might be able to construct the probability of  a given state. 
As a final example, we shall apply our definition to a system of  unstable 
particles. 

7. TIME INTERVAL FOR AN OPEN SYSTEM 

We must stress that our definition as it stands applies to a closed 
system, whereas a system of unstable particles is open in the sense that the 
mass of  the system is not constant. The definition must then be generalized 
to apply to this case. If  we write the definition of  the time interval 

r r 

tba = ~ r l o g P ( b )  - ~ f l o g P ( a )  (7.1) 

and recall that M is the mass of the system (in states a and b), we immediately 
generalize the definition in a natural way by setting for an opened system 

CO r  
tb~ = ~ log P(b) -- - ~  log P(a) (7.2) 

where Mx is the mass of  the system in the state x. We shall compute the 
time interval relation between two states of a system of unstable particles. 

8. OPEN SYSTEMS OF UNSTABLE PARTICLES 

We consider a system consisting of  particles of  type a, ?t, tz. To simplify 
the picture we admit that only the following reactions are observed: 

a+-~ ~ + tz, A +/z~--, ~ + tz, a~--~ a 

In what follows a "b state" is a state of  two particles At~ such that 

(Px + P.)2 = ma2c" 

We shall now formulate the problem of the decay of  a sample in our language 
Since we must apply elementary statistical methods (per forza) we must 
place ourselves in conditions where they apply without difficulty. Let then 
S be the sample that we study. S will contain qa particles of  the type a -  
we shall consider S to be a part of  a larger closed system a. Since there 
exist no closed systems (it is not possible to confine elementary particles), 
we shall consider o to be very large and contain all kinds of  sources. This 
will give us the best model of  a closed system (under the circumstances). 
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We define now the following: V is the volume of e; v is the volume of 
S; na is the total number of a particles in e; and nb is the total number of 
b states in e. We consider that n~ and nb are constant numbers in the sense 
that whatever the instant of  observation, the total number of particles in 
cr is n,, the total number of  states of ;~ and t~ particles such that (P~ + / , , ) 2  = 
rna2c 4 is nb. N = n~ + n b  is the total number of  a and b states contained 
incr. 

We shall look for the probability of finding q~ particles of  type a and 
q~ states b in S. This probability is given by 

N~ 
P(q , ,  qb) = qa! (na - qa)! qb[ (nb - qb)! 

x vY~176 [ ~  ~]]v~]%-%[nbv'~%[nb(1---~)]%-%~] [.~ (8.1) 

Where for instance (n , /N)(v lV)  is the elementary probability of  finding one 
particle of type a in S, and (na/N)(1 - v /V)  the elementary probability of  
observing an a particle outside S. 

What we are interested in is the time interval separating two states of 
S defined by qa = q, qb = 0 on the one hand and q~ -- q', qb = 0 on the 
other hand. The probabilities of  these states are P(q,  0) and P(q ' ,  0), respec- 
tively. The time interval separating these two states, is, with our definition 

taq. qma log P(q,  O) - oJ = ~ l o g P ( q ,  0) ( 8 . 2 )  

Since, for instance, the mass of S is qm,~ when it contains q particles. The 
limitations on the different numbers involved are the following for obvious 
reasons: v/V<< 1, q << na, nb. 

We may now make some approximations: 

l l o g P ( q ,  0 ) =  log q!(n,,  q)!nb! q 

(8.3) 

One has 

- q ) !  ~ no.V 
~" n . q  since q << n~ 
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Thus 

q ql~ q! \ N V ]  [N V IJ [.~ 

1(, N! 

+ C  

Where C contains terms independent of  q. Since N = na + n~, one can write 

~ logP(q,  O) ~ N~rn.!nb ! 

We make use next of  the Stifling formula: 

to obtain 

l l o g P ( q , O ) = ~ { l o g [  N ~z'S(X 

If  we consider the difference 

~ logP(q, O) - ~ logP(q', O) 

We get 

where we have neglected (l/q) log 2,rq compared with log q. 
We show now that under the conditions that we have defined the first 

term of equation (8.5) can be neglected. N is the total number na + nb of  
a and b states of  or. One notices that 

0 - v / v ) -  =~ 1 

since N/V = 4, the density of  a + b states, leads to 

(1 - v/V) ~r ~= e -By ~ 1 

(v is the volume of our sample) and that 

\ ~'n,,ne, ! j 
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is probably much smaller than its maximum 

since at the equilibrium between population a, I ,  ~ one has certainly n, << nb, 

whereas the maximum was obtained for n ,  = n~ = N/2 .  

The first term of (8.5) is thus of the order of 

If  we let now q, q ' ,  N tend homogeneously towards infinity, (8.6) will tend 
to zero and we remain with 

t t 

t~q, = ~ a a l o g q  = f l o g  q (8.7) 

with T = o~/ma. This formula in turn is equivalent to the classical quantum 
formula: 

q = q ' e - m  
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